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Chapter 3

ABDUCTION AS LOGICAL INFERENCE

1. Introduction

In the preceding overview chapter, we have seen how the notion of abduction
arose in the last century out of philosophical reflection on the nature of human
reasoning, as it interacts with patterns of explanation and discovery. Our analy-
sis brought out a number of salient aspects to the abductive process, which we
shall elaborate in a number of successive chapters. For a start, abduction may
be viewed as a kind of logical inference and that is how we will approach it in
the analysis to follow here. Evidently, though, as we have already pointed out,
it is not standard logical inference, and that for a number of reasons. Intuitively,
abduction runs in a backward direction, rather than the forward one of standard
inference, and moreover, being subject to revision, it exhibits non-standard non-
monotonic features (abductive conclusions may have to be retracted in the light
of further evidence), that are more familiar from the literature on non-standard
forms of reasoning in artificial intelligence. Therefore, we will discuss abduc-
tion as a broader notion of consequence in the latter sense, using some general
methods that have been developed already for non-monotonic and dynamic
logics, such as systematic classification in terms of structural rules. This is not
a mere technical convenience. Describing abduction in an abstract general way
makes it comparable to better-studied styles of inference, thereby increasing
our understanding of its contribution to the wider area of what may be called
‘natural reasoning’. To be sure, in this chapter we propose a logical character-
ization of what we have called an (abductive) explanatory argument, in order
to make explicit that the inference is explanatory (and thus forward chained),
while keeping in mind it aims to characterize the conditions for an abductive
explanation to be part of this inference (cf. chapter 2).
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The outcomes that we obtain in this first systematic chapter, naturally di-
vided into five parts, are as follows. After this introduction, in the second part
(section 2), we discuss the problem of demarcation in logic, in order to set the
ground for our analysis of abduction as a logical inference. Placing abduc-
tion in a broader universe of logics and stances, make natural to consider it as
a logical inference of its own kind. In the third part (section 3), we discuss
in detail some aspects of abductive inference, such as its direction, format of
premisses and conclusion as well as its inferential strength. We propose a gen-
eral logical format for abduction, involving more parameters than in standard
inference, allowing for genuinely different roles of premisses. We find a num-
ber of natural styles of abductive explanatory inference, rather than one single
candidate. These (abductive) explanatory versions are classified by different
structural rules of inference, and this issue occupies the fourth part (section
4). As a contribution to the logical literature in the field, we give a complete
characterization of one simple style of abductive explanatory inference, which
may also be viewed as the first structural characterization of a natural style of
explanation in the philosophy of science. We then analyze some other abduc-
tive explanatory versions (explanatory, minimal and preferential) with respect
to their structural behaviour, giving place to more sophisticated structural rules
with interest of their own. Finally, we turn to discuss further logical issues such
as how those representations are related to more familiar completeness theo-
rems, and finally, we show how abduction tends to involve higher complexity
than classical logic: we stand to gain more explanatory power than what is pro-
vided by standard inference, but this surplus comes at a price. In the fifth and
final part of this chapter (section 5),we offer an analysis of previous sections
centering the discussion on abduction as an enriched form of logical inference
with an structure of its own. We then put forward our conclusions and present
related work within the study of non-monotonic reasoning.

Despite these useful insights, pure logical analysis does not exhaust all there
is to abduction. In particular, it’s more dynamic process aspects, and its interac-
tion with broader conceptual change must be left for subsequent chapters, that
will deal with computational aspects, as well as further connections with the
philosophy of science and artificial intelligence. What we do claim, however,
is that our logical analysis provides a systematic framework for studying the
intuitive notion of abductive explanatory inference, which gives us a view of
its variety and complexity, and which allows us to raise some interesting new
questions.

2. Logic: The Problem of Demarcation

One of the main questions for logic is the problem of demarcation, that is,
to distinguish between logical and non-logical systems. This question is at
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the core of the philosophy of logic, and has a central place in the philosophy
of mathematics, in the philosophy of science as well as in the foundations of
artificial intelligence.

Some questions in need for an answer for this problem concern the following
ones: what is a logic?, which is the scope of logic?, which formal systems
qualify as logics?, all of these leading to metaphysical questions concerning
the notion of correctness of a logical system: does it make sense to speak of a
logical system as correct or incorrect?, could there be several logical systems
which are equally correct?, is there just one correct logical system? These
questions in turn lead to epistemological questions of the following kind: how
does one recognise a truth of logic? could one be mistaken in what one takes
to be such truths?

There are however, several proposals and positions in the literature in regard
to all these questions. Our strategy to describe the problem of demarcation of
logic will be the following. Our point of departure is Peirce’s distinction of
three types of reasoning, namely deduction, induction, and abduction. We will
compare them according to their certainty level, something that in turn gives
place to different areas of application, mainly in mathematics, philosophy of
science and artificial intelligence. Next, we will introduce an standard approach
in philosophy of logic based on the relationship between informal arguments
and their counterparts in formal logic, namely the view endorsed by Haack
[Haa78]. Her classification of kinds of logics will be presented, that is, the
well-known distinction amongst extensions and deviations of classical logics,
and inductive logics. Moreover, we take up on Haack’s discussion on the
several positions with respect to the legitimization (and proliferation) of logics,
namely instrumentalism, monism and pluralism. Finally, we will introduce a
much less-known approach –but still standard within its field – coming from
artificial intelligence, namely the logical structural approach devised for the
study of non-monotonic reasoning.

Our overall discussion in this section will serve two purposes. On the one
hand, it aims to show that even under a broad view of logic, there is neither a
unique nor a definite answer to the problem of demarcation, not to mention to
each of the former questions. On the other hand, it will set the ground for the
main purpose of this chapter, that is, an analysis of abduction as a specific kind
of logical inference, in order to show, that abduction holds a natural place to be
considered a logical inference of its own kind.

Types of Reasoning: Deduction, Induction, Abduction
From a logical perspective, mathematical reasoning may be identified with

classical, deductive inference. Two aspects are characteristic of this type of
reasoning, namely its certainty and its monotonicity. The first of these is exem-
plified by the fact that the relationship between premisses and conclusion is that
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of necessity; a conclusion drawn from a set of premisses, necessarily follows
from them. The second aspect states that conclusions reached via deductive
reasoning are non-defeasible. That is, once a theorem has been proved, there is
no doubt of its validity regardless of further addition of axioms and theorems
to the system.

There are however, several other types of formal non-classical reasoning,
which albeit their lack of complete certainty and monotonicity, are nevertheless
rigorous forms of reasoning with logical properties of their own. Such is the
case of inductive and abductive reasoning. As a first approximation, Charles S.
Peirce distinction seems useful. According to him, there are three basic types
of logical reasoning: deduction, induction and abduction. Concerning their
certainty level: ‘Deduction proves that something must be; Induction shows that
something actually is operative; Abduction merely suggests that something may
be’ [CP, 5.171]. Therefore, while deductive reasoning is completely certain,
inductive and abductive reasoning are not. ‘Deduction is the only necessary
reasoning. It is the reasoning of mathematics’ [CP, 4.145]. Induction must
be validated empirically with tests and experiments, therefore it is defeasible;
and abductive reasoning can only offer hypotheses that may be refuted with
additional information. For example, a generalization reached by induction
(e.g. all birds fly), remains no longer valid after the addition of a premisse,
which refutes the conclusion (e.g. penguins are birds). As for abduction, a
hypothesis (e.g. it rained last night) which explains an observation (e.g. the
lawn is wet), may be refuted when additional information is incorporated into
our knowledge base (e.g. it is a drought period).

Deductive reasoning has been the paradigm of mathematical reasoning, and
its logic is clearly identified with Tarski’s notion of logical inference. In contrast,
inductive and abductive types of reasoning are paradigmatic types of reasoning
in areas like philosophy of science, and more recently, artificial intelligence.
Regarding the former, contemporary research indicates that many questions
regarding their logic remain controversial. As it is well known, Carnap’s pro-
posal for an inductive logic[Car55] found ample criticisms. As for abduction,
while some scholars argue that the process of forming an explanatory hypothe-
sis (our abductive process) cannot be logically reconstructed [Pop59, Hem65],
and have instead proposed each a logical characterization of explanation (our
(abductive) explanatory argument)1; others have tried to formally characterize

1As for the roots and similarities of these two models of explanation, Niiniluoto[Nii00, p. 140] rightly
observes: “After Hempel’s (1942) paper about the deductive–nomological pattern of historical explana-
tion, Karl Popper complained that Hempel had only reproduce his theory of causal explanation, originally
presented in ‘Logik der Forschung’ (1935, see Popper 1945, chap 25, n. 7; Popper 1957, p. 144). With
his charming politeness, Hempel pointed out that his account of D–N explanation is ‘by no means novel’
but ‘merely summarizes and states explicitly some fundamental points which have been recognized by many
scientists and methodologists”.
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‘retroduction’ (another term for abduction), as a form of inversed deduction
[Han61], but no acceptable formulation has been found. Regarding the latter, re-
cent logico-computational oriented research has focus on studying non-standard
forms of reasoning, in order to build computer programs modeling human rea-
soning, which being subject to revision, is uncertain and exhibits non-standard
non-monotonic features. Several contemporary authors propose a more finely
structured algorithmic description of logics. This concern is found both in the
logical tradition ([Gab94a, vBe90]), as well as in work in philosophy ([Gil96]).

Logics: Extensions, Deviations, Inductive
Haack[Haa78] takes as primitive an intuitive notion of a formal system, and

from there it hints at the characterization of what is to be a logical system, as
follows:

“The claim for a formal system to be a logic depends, I think, upon its having an
interpretation according to which it can be seen as aspiring to embody canons of valid
argument." [Haa78, page 3].

The next problem to face is that of deciding what counts as valid argumen-
tation. But before we get into her own answer to this question, here are other
criteria aiming to characterize what counts as a logical system. On the one
hand, according to Kneale, logical systems are those that are purely formal,
for him, those that are complete (in which all universal valid formula are the-
orems). According to Dummet, on the other hand, logical systems are those
which characterize precise notions. Following the first characterization, many
formal systems are left out, such as second order logic. If we follow the second
one, then proposals such as Hintikka’s system of epistemic logic is left out as
well, for the notions of knowledge and belief characterize pretty vague epis-
temic concepts [Haa78, page 7]. Both these characterizations provide purely
formal criteria for logical demarcation. For Haack, however ‘the prospects for
a well-motivated formal criterion are not very promising’[Haa78, page 7], for
it has the drawback of limiting the scope of logic to the point of even discarding
well accepted formal systems (e.g. predicate logic) on the basis of being in
absence of other metalogical properties (e.g. decidability). Moreover, many
logical systems are indeed undecidable, incomplete, but nevertheless have in-
teresting applications and have proved useful in areas like computer science
and linguistics.

Haack takes a broad view of logic, considering that ‘the demarcation is not
based on any very profound ideas about ‘the essential nature of logic’[Haa78,
page 4], and follows ‘the benefit of the doubt policy’, according to which,
arguments may be assessed by different standards of validity, and thus accepts
several formal systems as logical. For her, the question we should be asking
is whether a system is good and useful rather than ‘logical’, which after all is
not a well-defined concept. Her approach however, is not wholly arbitrary, for
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it does not give up the requirement of being rigorous, and takes classical logic
as its reference point, building up a classification of systems of logic based on
analogies to the classical system, as follows:

Extensions (e)

Modal, Epistemic, Eroretic, . . .

Deviations (d)

Intuitionistic, Quantum, Many-valued, . . .

Inductive (i)

Inductive probability logic

Extensions (e) are formal logical systems, which extend the system of clas-
sical logic (Lc) in three respects: their language, axioms and rules of inference
(Lc ⊆ Le,Ac ⊆ Ae,Rc ⊆ Re). These systems preserve all valid formula of
the classical system, and therefore all previous valid formula remain valid as
well (∀ϕ(Σ |=c ϕ ⇒ Σ |=e ϕ);ϕ ∈ Lc). So, for instance, modal logic extends
classical system by the modal operators of necessity and possibility together
with axioms and rules for them.

Deviations (d) are formal systems that share the language with the system
of classical logic (Lc) but that deviate in axioms and rules (Lc = Ld,Ac %=
Ad,Rc %= Rd). Therefore, some formulae, which are valid in the classical
system, are no longer valid in the deviant one (∃ϕ(Σ |=c ϕ∧Σ %|=d ϕ);ϕ ∈ Lc).
Such is the case of intuitionistic logic, in which the classical axiom A ∨ ¬A is
no longer valid.

Inductive systems (i) are formal systems that share the language with the
system of classical logic (Lc = Li), but in which no formula which is valid
by means of the inductive system is valid in the classical one (∀ϕ(Σ |=i ϕ ⇒
Σ %|=c ϕ);ϕ ∈ Li). Here the basis is the notion of ‘inductive strength’, and
the idea is that ‘an argument is inductively strong if its premisses give a certain
degree of support, even if less than conclusive support, to its conclusion: if,
that is, it is improbable that its premisses (Σ) should be true and its conclusion
(ϕ) false’ (not prob(Σ ∧ ¬ϕ)) [Haa78, page 17].

In each of these logical systems there is an underlying notion of logical con-
sequence (or of derivability), which settles the validity of an argument within
the system. While the first two categories pertain to formal systems which are
deductive in nature, the third one concerns inductive ones. But still there may be
several characterizations for both deductive and inductive kinds. For example,
one deviant system, that of relevance logic renders the notion of classical con-
sequence insufficient and asks for more: an argument in relevance logic must
meet the requirement that the premisses be ‘relevant’ to its conclusion. As for
inductive systems, another way of characterizing them is that for which ‘it is
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improbable, given that the premisses (Σ) are true, that the conclusion is false
(¬ϕ)’ [Haa78, page 17]. We may interpret this statement in terms of conditional
probability as follows2: (not prob(Σ/¬ϕ)). Notice that deductive validity
is a limiting case of inductive strength, where the probability of the premisses
being true and the conclusion false is cero, for the first characterization, and
where it is certain that the conclusion is true when the premisses are, for this
second one.

In the overall, under this approach arguments may be assessed by deductive
or inductive standards, and thus there may be deductively valid, inductively
strong or neither. As we shall see later in this chapter (cf. section 5.1), this
classification does not explicitly take into account abductive logic, but it can
nevertheless be accommodated within.

Positions: Instrumentalism, Monism, Pluralism
The position taken with respect to the demarcation of logic largely depends

upon the answers given to metaphysical questions concerning the notion of cor-
rectness of a logical system, which in turn depend on the distinction between
system-relative and extra-systematic validity/logical truth. Roughly speaking,
a logical system is correct if the formal arguments (and formula) which are
valid (logically true) in that system correspond to informal arguments (state-
ments), which are valid (logically true) in the extra-systematic sense([Haa78,
page 222]). Three positions are characterized by Haack, each of which is
characterized by the answers (affirmative or negative) given to the following
questions:

Questions:

A: Does it make sense to speak of a logical system as correct or incorrect?

B: Are there extra-systematic conceptions of validity/logical truth by means of
which to characterize what is it for a logic to be correct?

C: Is there one correct system?

D: Must a logical system aspire to global application, i.e. to represent reasoning
irrespective of subject-matter, or may a logic be locally correct. i.e. correct within
a limited area of discourse?

2I thank the anonymous referee for this particular suggestion.
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A

B

NO YES

Instrumentalism C

NO YES

Pluralism Monism

D

Local Pluralism Global Pluralism

Thus, on the one hand, the instrumentalist position answers the first two
questions negatively. It is based on the idea that the notion of ‘correctness’ for a
system is inappropriate, and that one should rather be asking for its being more
fruitful, useful, convenient... etc than another one. ‘An instrumentalist will
only allow the ‘internal’ question, whether a logical system is sound, whether,
that is, all and only the theorems/syntactically valid arguments of the system
are logically true/valid in the system’[Haa78, page 224]. On the other hand,
both the monist and the pluralist answer these questions in the affirmative,
the difference being that while the monist recognizes one and only one system
of logic, the pluralist accepts a variety of them. Thus, they answer the third
question opposite. Note that the distinction in these questions is only relevant
for the classical logic vs. deviant logic dichotomy. The reason being that for
a monist classical logic and its extensions are fragments of a ‘correct system’,
and for a pluralist classical logic and its extensions are both ‘correct’.

Likewise, while for an instrumentalist there are not extra-systematic concep-
tions of validity/logical truth by means of which to characterize what is to be a
logic to be correct, for the monist as well as for the pluralist there are, either in
the unitary fashion or in the pluralistic one. A further distinction made by the
pluralist concerns the scope of application for a certain logical system. While a
global pluralist endorses the view that a logical system must aspire to represent
reasoning irrespective of subject-matter, a local pluralist supports the view that
a logical system is only locally correct within a limited area of discourse.

The next question to analyze is the position taken by each of these stances
with regard to whether deviant logics rival classical logic. In order to answer
this question we have the following diagram:
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(i) Formal argument which is (ii) Valid in L

represents corresponding
to (iii)’s being

(iii) Informal argument (iv) extra-systematically valid

On the one hand, the monist answers this question in the affirmative and sup-
ports the view that (i) aspires to represent (iii) in such a way that (ii) and (iv) do
correspond in the ‘correct logic’. On the other hand, the local pluralist answers
this question in the negative by relativizing (iv) to specific areas of discourse
and the global pluralist either fragments the relation between (i) and (iii) (that
is, denies that the formal arguments of a deviant system represent the same
informal arguments as those of classical logic) or fragments the relationship
between (ii) and (iv) (denies that validity in the deviant logic is intended to cor-
respond to extra-systematic validity as that to which validity in classical logic
is intended to correspond). Finally, the instrumentalist rejects (iv) altogether.

Structural Logical Approach
This type of analysis (started in [Sco71]) was inspired in the works of logical

consequence by Tarski [Tar83] and those of natural deduction by Gentzen
[SD93, Pao02]. It describes a style of inference at a very abstract structural
level, giving its pure combinatorics. It has proved very successful in artificial
intelligence for studying different types of plausible reasoning ([KLM90]), and
indeed as a general framework for non-monotonic consequence relations (
[Gab85]). Another area where it has proved itself is dynamic semantics, where
not one but many new notions of dynamic consequences are to be analyzed (
[vBe96a]). The basic idea of logical structural analysis is the following:

A notion of logical inference can be completely characterized by its basic combinatorial
properties, expressed by structural rules.

Structural rules are instructions which tell us, e.g., that a valid inference
remains valid when we insert additional premisses (‘monotonicity’), or that we
may safely chain valid inferences (‘transitivity’ or ‘cut’). To understand this
perspective in more detail, one must understand how it characterizes classical
inference. In what follows we use logical sequents with a finite sequence of
premisses to the left, and one conclusion to the right of the sequent arrow
(Σ ⇒ C). While X, Y and Z are finite sets of formulae, A, B and C are single
formula.

Classical Inference
The structural rules for classical inference are the following:
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Reflexivity: C ⇒ C

Contraction:
X, A, Y, A, Z ⇒ C

X, A, Y, Z ⇒ C

Permutation:
X, A, B, Y ⇒ C

X, B, A, Y ⇒ C

Monotonicity:

X, Y ⇒ C

X, A, Y ⇒ C

Cut Rule:

X, A, Y ⇒ C Z ⇒ A

X, Z, Y ⇒ C

These rules state the following properties of classical consequence. Any pre-
misse implies itself (reflexivity), deleting repeated premisses causes no trou-
ble (contraction); premisses may be permuted without altering validity (per-
mutation), adding new information does not invalidate previous conclusions
(monotonicity), and premisses may be replaced by sequences of premisses im-
plying them (cut). In all, these rules allow us to treat the premisses as a mere
set of data without further relevant structure. This plays an important role in
classical logic, witness what introductory textbooks have to say about “sim-
ple properties of the notion of consequence"3. Structural rules are also used
extensively in completeness proofs4.

These rules are structural in that they mention no specific symbols of the
logical language. In particular, no connectives or quantifiers are involved. This
makes the structural rules different from inference rules like, say, Conjunction
of Consequents or Disjunction of Antecedents, which also fix the meaning of

3In [Men64, Page 30] the following simple properties of classical logic are introduced:

If Γ ⊆ ∆ and Γ " φ, then ∆ " φ.

Γ " φ iff there is a finite subset ∆ of Γ such that ∆ " φ.

If Γ " xi (for all i) and x1, . . . , xn " φ then Γ " φ.

Notice that the first is a form of Monotonicity, and the third one of Cut.
4As noted in [Gro95, page46]: “In the Henkin construction for first-order logic, or propositional modal
logic, the notion of maximal consistent set plays a major part, but it needs the classical structural rules. For
example, Permutation, Contraction and Expansion enable you to think of the premisses of an argument as a
set; Reflexivity is needed to show that for maximal consistent sets, membership and derivability coincide”.
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conjunction and disjunction. Under this approach, Haack’s previous classifica-
tion of extensions of logics is subsumed, for one rule may fit classical logic as
well as extensions: propositional, first-order, modal, type-theoretic, etc. Each
rule in the above list reflects a property of the set-theoretic definition of classical
consequence ([Gro95]), which – with some abuse of notation – calls for inclu-
sion of the intersection of the (models for the) premisses in the (models for the)
conclusion:

P1, . . . , Pn ⇒ C iff P1 ∩ . . . ∩ Pn ⊆ C.

Now, in order to prove that a set of structural rules completely characterizes
a style of reasoning, representation theorems exist. For classical logic, one
version was proved by van Benthem in [vBe91]:

Proposition 1 Monotonicity, Contraction, Reflexivity, and Cut completely de-
termine the structural properties of classical consequence.
Proof. Let R be any abstract relation between finite sequences of objects and single
objects satisfying the classical structural rules. Now, define:

a* = {A | A is a finite sequence of objects such that ARa}.

Then, it is easy to show the following two assertions:

1 If a1, . . . , akRb, then a∗
1 ∩ . . . ∩ a∗

k ⊆ b∗,
using Cut and Contraction.

2 If a∗
1 ∩ . . . ∩ a∗

k ⊆ b∗, then a1, . . . , akRb,
using Reflexivity and Monotonicity. $

Permutation is omitted in this theorem. And indeed, it turns out to be deriv-
able from Monotonicity and Contraction.

We have thus shown that classical deductive inference, observes easy forms of
reflexivity, contraction, permutation, monotonicity and cut. The representation
theorem shows that these rules completely characterize this type of reasoning.

Non-Classical Inference
For non-classical consequences, classical structural rules may fail. Well-known
examples are the ubiquitous ‘non-monotonic logics’. However, this is not to
say that no structural rules hold for them. The point is rather to find appropriate
reformulations of classical principles (or even entirely new structural rules) that
fit other styles of consequence. For example, many non-monotonic types of
inference do satisfy a weaker form of monotonicity. Additions to the premisses
are allowed only when these premisses imply them:

Cautious Monotonicity:

X ⇒ C X ⇒ A

X, A ⇒ C
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Dynamic inference is non-monotonic (inserting arbitrary new processes into
a premisse sequence can disrupt earlier effects). But it also quarrels with other
classical structural rules, such as Cut. But again, representation theorems exist.
Thus, the ‘update-to-test’ dynamic style (once in which a process cannot be
disrupted) and is characterized by the following restricted forms of monotonicity
and cut, in which additions and omissions are licensed only to the left side:

Left Monotonicity:
X ⇒ C

A, X ⇒ C

Left Cut:
X ⇒ C X, C, Y ⇒ D

X, Y ⇒ D

For a broader survey and analysis of dynamic styles, see [Gro95, vBe96a].
For sophisticated representation theorems in the broader field of non-classical
inference in artificial intelligence see [Mak93, KLM90]. Yet other uses of non-
classical structural rules occur in relevance logic, linear logic, and categorial
logics (cf. [DH93, vBe91]. [Gab94b]).

Characterizing a notion of inference in this way, determines its basic reper-
toire for handling arguments. Although this does not provide a more ambitious
semantics, or even a full proof theory, it can at least provide valuable hints. The
suggestive Gentzen style format of the structural rules turns into a sequent calcu-
lus, if appropriately extended with introduction rules for connectives. However,
it is not always clear how to do so in a natural manner, as we will discuss later
in connection with abduction.

The structural analysis of a logical inference is a metalevel explication which
is based on structural rules and not on language, as it does not take into account
logical connectives or constants, and in this respect differs from Haack’s ap-
proach.

3. Abductive Explanatory Argument: A Logical Inference
Here are some preliminary remarks about the logical nature of abductive

inference, which set the scene for our subsequent discussion. The standard
textbook pattern of logical inference is this: Conclusion C follows from a set
of premisses P . This format has its roots in the axiomatic tradition in mathe-
matics that follows the deductive method, inherited from Euclid’s Elements, in
which from a certain set of basic axioms, all geometrical truths of elementary
geometry are derived. This work is not only the first logical system of its kind,
but it has been the model to follow in mathematics as well as in other formal
scientific enterprises. Each proposition is linked, via proofs, to previous ax-
ioms, definitions and propositions. This method is forward chained, picturing
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a reasoning from a finite set of premisses to a conclusion, and it is completely
certain and monotonic5.

Moreover, there are at least two ways of thinking about validity in this setting,
one semantic, based on the notions of model and interpretation (every model in
which P is true makes C true), the other syntactic, based on a proof-theoretic
derivation of C from P . Both explications suggest forward chaining from pre-
misses to conclusions: P ⇒ C and the conclusions generated are undefeasible.
We briefly recall some features that make abduction a form of inference that
does not fit easily into this format. All of them emerged in the course of our pre-
ceding chapter. Most prominently, in abduction, the conclusion is the given and
the premisses (or part of them) are the output of the inferential process: P ⇐ C.
Moreover, the abduced premisse has to be consistent with the background the-
ory of the inference, as it has to be explanatory. And such explanations may
undergo change as we modify our background theory. Finally, when different
sets of premisses can be abduced as explanations, we need a notion of prefer-
ence between them, allowing us to choose a best or minimal one. These various
features, though non-standard when compared with classical logic, are familiar
from neighbouring areas. For instance, there are links with classical accounts
of explanation in the philosophy of science [Car55, Hem65], as well as recent
research in artificial intelligence on various notions of common sense reasoning
[McC80, Sho88, Gab96]. It has been claimed that this is an appropriate broader
setting for general logic as well [vBe90], gaping back to the original program by
Bernard Bolzano (1781–1848), in his “Wissenschaftslehre" [Bol73]. Indeed,
our discussion of abduction in Peirce in the preceding chapter reflected a typical
feature of pre-Fregean logic: boundaries between logic and general methodol-
ogy were still rather fluid. In our view, current post-Fregean logical research is
slowly moving back towards this same broader agenda. More concretely, we
shall review the mentioned features of abduction in some further detail now,
making a few strategic references to this broader literature.

Directions in Reasoning: Forward and Backward
Intuitively, a valid inference from, say, premisses P1, P2 to a conclusion C

allows for various directions of thought. In a forward direction, given the pre-
misses, we may want to draw some strongest, or rather, some most appropriate
conclusion. (Notice incidentally, that the latter notion already introduces a cer-
tain dependence on context, and good sense: the strongest conclusion is simply

5This is not say however –as Hilbert would have liked to claim– that all mathematical reasoning may be
reduced to axiomatics. As it is well know by the incompleteness results of Gödel, there are clear limitations
to reasoning in mathematics through the axiomatic method. Moreover, the view of mathematics as an
experimental, empirical science, found in philosophy[Lak76] as well as in recent work in computer science
[Cha97], shows that axiomatics cannot exhaust all there is to mathematical reasoning.
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P1 ∧ P2, but this will often be unsuited.) Classical logic also has a backward
direction of thought, when engaged in refutation. If we know that C is false,
then at least one of the premisses must be false. And if we know more, say the
truth of P1 and the falsity of the conclusion, we may even refute the specific
premisse P2. Thus, in classical logic, there is a duality between forward proof
and backward refutation. This duality has been noted by many authors. It
has even been exploited systematically by Beth when developing his refutation
method of semantic tableaux [Bet69]. Read in one direction, closed tableaux
are eventually failed analyses of possible counterexamples to an inference, read
in another they can be arranged to generate a Gentzen-style sequent derivations
of the inference (we shall be using tableaux in our next chapter, on computing
abduction.) Beth’s tableaux can be taken as a formal model of the historical
opposition between methods of ‘analysis’ and ‘synthesis’ in the development
of scientific argument (cf. chapter 1). Methodologically, the directions are
different sides of the same coin, namely, some appropriate notion of inference.

Likewise, in abduction, we see an interplay of different directions. This time,
though, the backward direction is not meant to provide refutations, but rather
confirmations. We are looking for suitable premisses that would support the
conclusion6.

Our view of the matter is the following. In the final analysis, the distinction
between directions is a relative one. What matters is not the direction of ab-
duction, but rather an interplay of two things. As we have argued in chapter 2,
one should distinguish between the choice of an underlying notion of inference
⇒, and the independent issue as to the search strategy that we use over this.
Forward reasoning is a bottom up use of ⇒ , while backward reasoning is a
top-down use of ⇒. In line with this, in this chapter, we shall concentrate
on notions of inference ⇒ leaving further search procedures to the next, more
computational chapter 4. In this chapter the intuitively backward direction of
abduction is not crucial to us, except as a pleasant manner of speaking. In-
stead, we concentrate on appropriate underlying notions of consequence for
abduction.

Formats of Inference: Premisses and Background Theory
The standard format of logical inference is essentially binary, giving a tran-

sition from premisses to a conclusion:

P1, . . . , Pn

C

6In this case, a corresponding refutation would rather be a forward process: if the abduced premisse turns out
false, it is discarded and an alternative hypothesis must be proposed. Interestingly, [Tij97] (a recent practical
account of abduction in diagnostic reasoning) mixes both ‘positive’ confirmation of the observation to be
explained with ‘refutation’ of alternatives.



Abduction as Logical Inference 67

These are ‘local steps’, which take place in the context of some, implicit or
explicit, background theory (as we have seen in chapter 2). In this standard for-
mat, the background theory is either omitted, or lumped together with the other
premisses. Often this is quite appropriate, especially when the background
theory is understood. But sometimes, we do want to distinguish between dif-
ferent roles for different types of premisse, and then a richer format becomes
appropriate. The latter have been proposed, not so much in classical logic,
but in the philosophy of science, artificial intelligence, and informal studies
on argumentation theory. These often make a distinction between explicit pre-
misses and implicit background assumptions. More drastically, premisse sets,
and even background theories themselves often have a hierarchical structure,
which results in different ‘access’ for propositions in inference. This is a real-
istic picture, witness the work of cognitive psychologists like [Joh83].

In Hempel’s account of scientific explanation (cf. chapter 5) premisses play
the role of either scientific laws, or of initial conditions, or of specific explana-
tory items, suggesting the following format:

Scientific laws + initial conditions + explanatory facts
⇓

Observation

Further examples are found on the borderline of the philosophy of science
and philosophical logic, in the study of conditionals. The famous ‘Ramsey
Test’ presupposes revision of explicit beliefs in the background assumptions
[Sos75, vBe94], which again have to be suitably structured. More elaborate
hierarchical views of theories have been proposed in artificial intelligence and
computer science. [Rya92] defines ‘ordered theory presentations’, which can
be arbitrary rankings of principles involved in some reasoning practice. (Other
implementations of similar ideas use labels for formulas, as in the labelled
deductive systems of [Gab96].) While in Hempel’s account, structuring the
premisses makes sure that scientific explanation involves an interplay of laws
and facts, Ryan’s motivation is resolution of conflicts between premisses in
reasoning, where some sentences are more resistant than others to revision.
(This motivation is close to that of the Gärdenfors theory, to be discussed in
chapter 8. A working version of these ideas is found in a study of abduction
in diagnosis ([Tij97], which can be viewed as a version of our later account
in this chapter with some preference structure added.) More structured views
of premisses and theories can also be found in situation semantics, with its
different types of ‘constraints’ that govern inference (cf. [PB83]).

In all these proposals, the theory over which inference takes place is not just a
bag into which formulas are thrown indiscriminately, but an organized structure
in which premisses have a place in a hierarchy, and play specific different roles.
These additional features need to be captured in richer inferential formats for
more complicated reasoning tasks. Intuitive ‘validity’ may be partly based on
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the type and status of the premisses that occur. We cite one more example, to
elaborate what we have in mind.

In argumentation theory, an interesting proposal was made in [Tou58]. Toul-
min’s general notion of consequence was inspired on the kind of reasoning
done by lawyers, whose claims need to be defended according to juridical pro-
cedures, which are richer than pure mathematical proof. Toulmin’s format of
reasoning contains the necessary tags for these procedures:

Data ! Claim

Warrant
|

Backing

Qualifier

Rebuttal

Every claim is defended from certain relevant data, by citing (if pressed) the
background assumptions (one’s ‘warrant’) that support this transition. (There
is a dynamic process here. If the warrant itself is questioned, then one has to
produce one’s further ‘backing’.) Moreover, indicating the purported strength
of the inference is part of making any claim (whence the ‘qualifier’), with a
‘rebuttal’ listing some main types of possible exception (rebuttal) that would
invalidate the claim. [vBe94] relates this format to issues in artificial intelli-
gence, as it seems to describe common sense reasoning rather well. Toulmin’s
model has also been proposed as a mechanism for intelligent systems perform-
ing explanation ([Ant89]).

Thus, once again, to model reasoning outside of mathematics, a richer format
is needed. Notice that the above proposals are syntactic. It may be much
harder to find purely semantic correlates to some of the above distinctions: as
they seem to involve a reasoning procedure rather than propositional content.
(For instance, even the distinction between individual facts and universal laws
is not as straightforward as it might seem.) Various aspects of the Toulmin
schema will return in what follows. For Toulmin, inferential strength is a
parameter, to be set in accordance with the subject matter under discussion.
(Interestingly, content-dependence of reasoning is also a recurrent finding of
cognitive psychologists: cf. the earlier-mentioned [Joh83].) In chapter 2, we
have already defended exactly the same strategy for abduction. Moreover, the
procedural flavor of the Toulmin schema fits well with our product-process
distinction.

As for the basic building blocks of abductive explanatory inference, in the
remainder of this book, we will confine ourselves to a ternary format:

Θ | α ⇒ ϕ
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This modest step already enables us to demonstrate a number of interesting
departures from standard logical systems. Let us recall some considerations
from chapter 2 motivating this move. The theory Θ needs to be explicit for
a number of reasons. Validity of an abductive inference is closely related to
the background theory, as the presence of some other explanation β in Θ may
actually disqualify α as an explanation. Moreover, what we called ‘triggers’
of explanation are specific conditions on a theory Θ and an observation ϕ.
A fact may need explanation with respect to one theory, but not with respect
to another. Making a distinction between Θ and α allows us to highlight the
specific explanation (which we did not have before), and control different forms
of explanation (facts, rules, or even new theories). But certainly, our accounts
would become yet more sensitive if we worked with some of the above richer
formats.

Inferential Strength: A Parameter

At first glance, once we have Tarski’s notion of truth, logical consequence
seems an obvious defined notion. A conclusion follows if it is true in all models
where the premisses are true. But the contemporary philosophical and compu-
tational traditions have shown that natural notions of inference may need more
than truth in the above sense, or may even hinge on different properties alto-
gether. For example, among the candidates that revolve around truth, statistical
inference requires not total inclusion of premisse models in conclusion models,
but only a significant overlap, resulting in a high degree of certainty. Other
approaches introduce new semantic primitives. Notably, Shoham’s notion of
causal and default reasoning ([Sho88]) introduces a preference order on models,
requiring only that the most preferred models of Σ be included in the models
of ϕ.

More radically, dynamic semantics replaces the notion of truth by that of
information change, aiming to model the flow of information. This move leads
to a redesign for Tarski semantics, with e.g. quantifiers becoming actions on
assignments ([vBC94]). This logical paradigm has room for many different
inferential notions ([Gro95, vBe96a]). An example is the earlier mentioned
update-to-test-consequence:

“process the successive premisses in Σ, thereby absorbing their informa-
tional content into the initial information state. At the end, check if the resulting
state is rich enough to satisfy the conclusion ϕ”.

Informational content rather than truth is also the key semantic property
in situation theory ([PB83]). In addition to truth-based and information-based
approaches, there are, of course, also various proof-theoretic variations on stan-
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dard consequence. Examples are default reasoning: “ϕ is provable unless and
until ϕ is disproved” ([Rei80]), and indeed Hempel’s hypothetico-deductive
model of scientific inference itself.

All these alternatives agree with our analysis of abductive explanatory in-
ference. On our view, abduction is not a new notion of inference. It is rather
a topic-dependent practice of scientific reasoning, which can be supported by
various members of the above family. In fact, it is appealing to think of ab-
ductive inference in several respects, as inference involving preservation of
both truth and explanatory power. In fact, appropriately defined, both might
turn out equivalent. It has also been argued that since abduction is a form
of reversed deduction, just as deduction is truth-preserving, abduction must
be falsity-preserving ([Mic94]). However, [Fla95] gives convincing arguments
against this particular move. Moreover, as we have already discussed intuitively,
abduction is not just deduction in reverse.

Our choice here is to study abductive inference in more depth as a strength-
ened form of classical inference. This is relevant, it offers nice connections
with artificial intelligence and the philosophy of science, and it gives a useful
simple start for a broader systematic study of abductive inference. One can
place this choice in a historical context, namely the work of Bernard Bolzano,
a nineteenth century philosopher and mathematician (and theologian) engaged
in the study of different varieties of inference. We provide a brief excursion,
providing some perspective for our later technical considerations.

Bolzanos’s Program

Bolzano’s notion of deducibility (Ableitbarkeit) has long been recognized as
a predecessor of Tarski’s notion of logical consequence ([Cor75]). However,
the two differ in several respects, and in our broader view of logic, they even
appear radically different. These differences have been studied both from a
philosophical ([Tho81]) and from a logical point of view ([vBe84a]).

One of Bolzano’s goals in his theory of science ([Bol73]), was to show why
the claims of science form a theory as opposed to an arbitrary set of propositions.
For this purpose, he defines his notion of deducibility as a logical relationship
extracting conclusions from premisses forming compatible propositions, those
for which some set of ideas make all propositions true when uniformly sub-
stituted throughout. In addition, compatible propositions must share common
ideas. Bolzano’s use of ‘substitutions’ is of interest by itself, but for our pur-
poses here, we will identify these (somewhat roughly) with the standard use of
‘models’. Thompson attributes the difference between Bolzano’s consequence
and Tarski’s to the fact that the former notion is epistemic while the latter is
ontological. These differences have strong technical effects. With Bolzano,
the premisses must be consistent (sharing at least one model), with Tarski, they



Abduction as Logical Inference 71

need not. Therefore, from a contradiction, everything follows for Tarski, and
nothing for Bolzano.

Restated for our ternary format, then, Bolzano’s notion of deducibility reads
as follows (cf. [vBe84a]):

Θ | α ⇒ ϕ if
(1) The conjunction of Θ and α is consistent.
(2) Every model for Θ plus α verifies ϕ.

Therefore, Bolzano’s notion may be seen (anachronistically) as Tarski’s con-
sequence plus the additional condition of consistency. Bolzano does not stop
here. A finer grain to deducibility occurs in his notion of exact deducibility,
which imposes greater requirements of ‘relevance’. A modern version, involv-
ing inclusion-minimality for sets of abducibles, may be transcribed (again, with
some historical injustice) as:

Θ | α ⇒+ ϕ if
(1) Θ | α ⇒ ϕ

(2) There is no proper subset of α, α’, such that Θ | α’ ⇒ ϕ.

That is, in addition to consistency with the background theory, the premisse
setαmust be ‘fully explanatory’ in that no subpart of it would do the derivation.
Notice that this leads to non-monotonicity. Here is an example:

Θ | a → b, a ⇒+ b

Θ | a → b, a, b → c '⇒+ b

Bolzano’s agenda for logic is relevant to our study of abductive reasoning
(and the study of general non-monotonic consequence relations) for several
reasons. It suggests the methodological point that what we need is not so
much proliferation of different logics as a better grasp of different styles of
consequence. Moreover, his work reinforces an earlier claim, that truth is not all
there is to understanding explanatory reasoning. More specifically, his notions
still have interest. For example, exact deducibility has striking similarities to
explanation in philosophy of science (cf. chapter 5).

Abductive Explanatory Inference as Deduction in Reverse
In this section we define abductive explanatory inference as a strengthened

form of classical inference. Our proposal will be in line with abduction in
artificial intelligence, as well as with the Hempelian account of explanation. We
will motivate our requirements with our very simple rain example, presented
here in classical propositional logic:

Θ : r → w, s → w

ϕ : w

The first condition for a formula α to count as an explanation for ϕ with
respect to Θ is the inference requirement. Many formulas would satisfy this
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condition. In addition to earlier-mentioned obvious explanations (r: rain, s:
sprinklers-on), one might take their conjunction with any other formula, even
if the latter is inconsistent with Θ (e.g. r ∧ ¬w). One can take the fact itself
(w), or, one can introduce entirely new facts and rules (say, there are children
playing with water, and this causes the lawn to get wet).

Inference: Θ, α |= ϕ

α’s: r, s, r ∧ s, r ∧ z, r ∧ ¬w, s ∧ ¬w, w, [c, c → w], Θ → w.

Some of these ‘abductive explanations’ must be ruled out from the start. We
therefore impose a consistency requirement on the left hand side, leaving only
the following as possible abductive explanations:

Consistency: Θ, α is consistent.
α’s: r, s, r ∧ s, r ∧ z, w, [c, c → w], Θ → w.

An abductive explanation α is only necessary, if ϕ is not already entailed by
Θ. Otherwise, any consistent formula will count as an abductive explanation.
Thus we repeat an earlier trigger for abduction: Θ %|= ϕ. By itself, this does
not rule out any potential abducibles on the above list (as it does not involve the
argument α.) But also, in order to avoid what we may call external explana-
tions –those that do not use the background theory at all (like the explanation
involving children in our example) –, it must be required that α be insufficient
for explaining ϕ by itself (α %|= ϕ). In particular this condition avoids the trivial
reflexive explanation ϕ %⇒ ϕ. Then only the following explanations are left in
our list of examples:

Explanation Θ '|= ϕ, α '|= ϕ

α’s: r, s, r ∧ s, r ∧ z, Θ → w.

Now both Θ and α contribute to explaining ϕ. However, we are still left
with some formulas that do not seem to be genuine explanations (r ∧ z, Θ →
w). Therefore, we explore a more sensitive criterion, admitting only ‘the best
explanation’.

Selecting the Best Explanation
Intuitively, a reasonable ground for choosing a statement as the best explanation,
is its simplicity. It should be minimal, i.e. as weak as possible in performing
its job. This would lead us to prefer r over r ∧ z in the preceding example.
As Peirce puts it, we want the explanation that “adds least to what has been
observed” (cf. [CP, 6.479]). The criterion of simplicity has been extensively
considered both in the philosophy of science and in artificial intelligence. But
its precise formulation remains controversial, as measuring simplicity can be a
tricky matter. One attempt to capture simplicity in a logical way is as follows:

Weakest Abductive Explanation:
α is the weakest abductive explanation for ϕ with respect to Θ iff
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(i) Θ, α |= ϕ

(ii) For all other formulas β such that Θ, β |= ϕ, |= β → α.

This definition makes the explanations r and s almost the weakest in the
above example, just as we want. Almost, but not quite. For, the explanation
Θ → w, a trivial solution, turns out to be the minimal one. The following is a
folklore observation to this effect:

Fact 1 Given any theory Θ and observation ϕ to be explained from it, α = Θ → ϕ
is the weakest abductive explanation.

Proof. Obviously, we have (i) Θ, Θ → ϕ |= ϕ. Moreover, let α’ be any other expla-
nation. This says that Θ, α′ |= ϕ. But then we also have (by conditionalizing) that
α′ |= Θ → ϕ, and hence |= α′ → (Θ → ϕ) $

That Θ → ϕ is a solution that will always count as an explanation in a
deductive format was noticed by several philosophers of science ([Car55]). It
has been used as an argument to show how the issue would impose restrictions
on the syntactic form of abducibles. Surely, in this case, the explanation seems
too complex to count. We will therefore reject this proposal, noting also that it
fails to recognize (let alone compare) intuitively ‘minimal’ explanations like r
and s in our running example.

Other criteria of minimality exist in the literature. One of them is based on
preference orderings. The best explanation is the most preferred one, given an
explicit ordering of available assertions. In our example, we could define an
order in which inconsistent explanations are the least preferred, and the simplest
the most. These preference approaches are quite flexible, and can accommodate
various working intuitions. However, they may still depend on many factors,
including the background theory. This seems to fall outside a logical framework,
referring rather to further ‘economic’ decision criteria like utilities. A case in
point is Peirce’s ‘economy of research’ in selecting a most promising hypothesis.
What makes a hypothesis good or best has no easy answer. One may appeal
to criteria of simplicity, likelihood, or predictive power. To complicate matters
even further, we often do not compare (locally) quality of explanations given
a fixed theory, but rather (globally) whole packages of ‘theory + explanation’.
This perspective gives a much greater space of options. As we have not been
able to shed a new light from logic upon these matters, we will ignore these
dimensions here.

Further study would require more refined views of theory structure and rea-
soning practice, in line with some of the earlier references7, or even more
ambitiously, following current approaches to ‘verisimilitude’ in the philosophy
of science (cf. [Kui87]).

7Preferences over models (though not over statements) will be mentioned briefly as providing one possible
inference mechanism for abduction.
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We conclude with one final observation. perhaps one reason why the no-
tion of ‘minimality’ has proved so elusive is again our earlier product-process
distinction. Philosophers have tried to define minimality in terms of intrin-
sic properties of statements and inferences as products. But it may rather be
a process-feature, having to do with computational effort in some particular
procedure performing abduction. Thus, one and the same statement might be
minimal in one abduction, and non-minimal in another.

Abductive Explanatory Characterization Styles
Following our presentation of various requirements for an abductive explana-
tion, we make things more concrete for further reference. We consider five
versions of abductive explanations making up the following styles: plain, con-
sistent, explanatory, minimal and preferential, defined as follows:

Abductive Explanatory Styles
Given Θ (a set of formulae) and ϕ (a sentence), α is an abductive explanation if:

Plain :
(i) Θ, α |= ϕ.

Consistent :
(i) Θ, α |= ϕ,
(ii) Θ, α consistent.

Explanatory :
(i) Θ, α |= ϕ,
(ii) Θ '|= ϕ,
(iii) α '|= ϕ.

Minimal :
(i) Θ, α |= ϕ,
(ii) α is the weakest such abductive explanation (not equal to Θ → ϕ).

Preferential :
(i) Θ, α |= ϕ,
(ii) α is the best abductive explanation according to some given preferential order-
ing.

We can form other combinations, of course, but these will already exhibit
many characteristic phenomena. Note that these requirements do not depend
on classical consequence. For instance, in Chapter 5, the consistency and
the explanatory requirements work just as well for statistical inference. The
former then also concerns the explanandum ϕ. (For, in probabilistic reasoning
it is possible to infer two contradictory conclusions even when the premisses
are consistent.) The latter helps capture when an explanation helps raise the
probability of the explanandum.

A full version of abduction would make the formula to be abduced part of the
derivation, consistent, explanatory, and the best possible one. However, instead
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of incorporating all these conditions at once, we shall consider them one by
one. Doing so clarifies the kind of restriction each requirement adds to the
notion of plain abduction. Our standard versions will base these requirements
on classical consequence underneath. But we also look briefly toward the end at
versions involving other notions of consequence. We will find that our various
notions of abduction have advantages, but also drawbacks, such as an increase
of complexity for explanatory reasoning as compared with classical inference.

Up to now, we can say that abductive inference may be characterized by
reversed deduction plus additional conditions. However, is this all we can say
about the logic of abduction? This definition does not really capture the ratio-
nality principles behind this type of reasoning, like its non-monotonic feature
we have talked about.

In what follows, our aim is to present the characterization of abductive in-
ference from the structural perspective we introduced earlier in this chapter.
This approach has become popular across a range of non-standard logics. Our
systematic analysis will explore different abductive styles from this perspective.

4. Abductive Explanatory Inference:
Structural Characterization

Consistent Abductive Explanatory Inference
We recall the definition:

Θ | α ⇒ ϕ iff
(i) Θ, α |= ϕ

(ii) Θ, α are consistent

The first thing to notice is that the two items to the left behave symmetrically:
Θ | α ⇒ ϕ iff α | Θ ⇒ ϕ

Indeed, in this case, we may technically simplify matters to a binary format
after all: X ⇒ C , in which X stands for the conjunction of Θ and α, and C
for ϕ. To bring these in line with the earlier-mentioned structural analysis of
nonclassical logics, we view X as a finite sequence X1 . . . , Xk of formulas and
C as a single conclusion.

Classical Structural Rules
Of the structural rules for classical consequence, contraction and permutation

hold for consistent abduction. But reflexivity, monotonicity and cut fail, witness
by the following counterexamples:

Reflexivity: p ∧ ¬p %⇒ p ∧ ¬p

Monotonicity: p ⇒ p, but p,¬p %⇒ p

Cut: p,¬q ⇒ p, and p, q ⇒ q, but p,¬q, q %⇒ q
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New Structural Rules
Here are some restricted versions of the above failed rules, and some others that
are valid for consistent abduction:

1 Conditional Reflexivity (CR)

X ⇒ B

X ⇒ Xi
1 ≤ i ≤ k

2 Simultaneous Cut (SC)

U ⇒ A1 . . . U ⇒ Ak A1, . . . , Ak ⇒ B

U ⇒ B

3 Conclusion Consistency (CC)

U ⇒ A1 . . . U ⇒ Ak

A1, . . . , Ak ⇒ Ai
1 ≤ i ≤ k

These rules state the following. Conditional Reflexivity requires that the
sequence X derive something else (X ⇒ B), as this ensures consistency.
Simultaneous Cut is a combination of Cut and Contraction in which the sequent
A1, . . . , Ak may be omitted in the conclusion when each of its elements Ai

is consistently derived by U and this one in its turn consistently derives B.
Conclusion Consistency says that a sequent A1, . . . , Ak implies its elements
if each of these are implied consistently by something (U arbitrary), which is
another form of reflexivity.

Proposition 2 These rules are sound for consistent abduction.
Proof. In each of these three cases, it is easy to check by simple set-theoretic reason-
ing that the corresponding classical consequence holds. Therefore, the only thing to
be checked is that the premisses mentioned in the conclusions of these rules must be
consistent. For Conditional Reflexivity, this is because X already consistently implied
something. For Simultaneous Cut, this is because U already consistently implied some-
thing. Finally, for Conclusion Consistency, the reason is that U must be consistent, and
it is contained in the intersection of all the Ai, which is therefore consistent, too. $

A Representation Theorem
The given structural rules in fact characterize consistent abduction:

Proposition 3 A consequence relation satisfies structural rules 1 (CR), 2 (SC),
3 (CC) iff it is representable in the form of consistent abduction.
Proof. Soundness of the rules was proved above. Now consider the completeness
direction. Let ⇒ be any abstract relation satisfying 1, 2, 3. Define for any proposition
A,

A∗ = {X | X ⇒ A}
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We now show the following statement of adequacy for this representation:
Claim. A1, . . . , Ak ⇒ B iff ∅ ⊂ A∗

1 ∩ . . . ∩ A∗
k ⊆ B∗.

Proof. ‘Only if’. Since A1, . . . , Ak ⇒ B, by Rule 1 (CR) we have A1, . . . , Ak ⇒ Ai

(1 ≤ i ≤ k). Therefore, A1, . . . , Ak ∈ A∗
i , for each i with 1 ≤ i ≤ k, which gives the

proper inclusion. Next, let U be any sequence in the intersection of all A∗
i , for 1, . . . , k.

That is, U ⇒ A1, . . . , U ⇒ Ak. By Rule 2 (SC), U ⇒ B, i.e. U ∈ B∗, and we have
shown the second inclusion.
‘If’. Using the assumption of non-emptiness, let, say, U ∈

⋂
A∗

i , for 1, . . . , k. i.e.
U ⇒ A1, . . . , U ⇒ Ak. By Rule 3 (CC), A1, . . . , Ak ⇒ Ai (1 ≤ i ≤ k). By
the second inclusion then, A1, . . . , Ak ∈ B∗. By the definition of the function *, this
means that A1, . . . , Ak ⇒ B. $

More Familiar Structural Rules
The above principles characterize consistent abduction. Even so, there are
more familiar structural rules that are valid as well, including modified forms
of Monotonicity and Cut. For instance, it is easy to see that ⇒ satisfies a form
of modified monotonicity: B may be added as a premisse if this addition does
not endanger consistency. And the latter may be shown by their ‘implying’ any
conclusion:

Modified Monotonicity:

X ⇒ A X, B ⇒ C

X, B ⇒ A

As this was not part of the above list, we expect some derivation from the
above principles. And indeed there exists one:

Modified Monotonicity Derivation:

X, B ⇒ C

X, B ⇒ X ′
is

1
X ⇒ A

X, B ⇒ A
2

These derivations also help in seeing how one can reason perfectly well with
non-classical structural rules. Another example is the following valid form of
Modified Cut:

Modified Cut

X ⇒ A U, A, V ⇒ B U, X, V ⇒ C

U, X, V ⇒ B

This may be derived as follows:
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U, X, V ⇒ C

U, X, V ⇒ U ′s, V ′s
1

U, X, V ⇒ C

U, X, V ⇒ X ′
is

1
X ⇒ A

U, X, V ⇒ A

2

U, A, V ⇒ B

U, X, V ⇒ B
2

they stand, showing the power of Rule (3):

Permutation

X, A, B, Y ⇒ C

X, A, B, Y ⇒ X X, A, B, Y ⇒ A X, A, B, Y ⇒ B X, A, B, Y ⇒ Y

X, B, A, Y ⇒ X X, B, A, Y ⇒ B X, B, A, Y ⇒ A X, B, A, Y ⇒ Y
3

1

X, A, B, Y ⇒ C

X, B, A, Y ⇒ C
2

Contraction (one sample case)

X, A, A, Y ⇒ B

X, A, A, Y ⇒ X ′
is, A, Y ′

i s

X, A, Y ⇒ X ′
is, A, Y ′

i s
3

1

X, A, A, Y ⇒ B

X, A, Y ⇒ B
2

Thus, consistent abductive inference defined as classical consequence plus
the consistency requirement has appropriate forms of reflexivity, monotonicity,
and cut for which it is assured that the premisses remain consistent. Permutation
and contraction are not affected by the consistency requirement, therefore the
classical forms remain valid. More generally, the preceding examples show
simple ways of modifying all classical structural principles by putting in one
extra premisse ensuring consistency.

Simple as it is, our characterization of this notion of inference does provide a
complete structural description of Bolzano’s notion of deducibility introduced
earlier in this chapter (section 3.3).

Explanatory Abductive (Explanatory) Inference
Explanatory abductive explanatory inference (explanatory abduction, for

short)was defined as plain abduction (Θ,α |= ϕ) plus two conditions of neces-
sity (Θ %|= ϕ) and insufficiency (α %|= ϕ). However, we will consider a weaker
version (which only considers the former condition) and analyze its structural
rules. This is actually somewhat easier from a technical viewpoint. The full
version remains of general interest though, as it describes the ‘necessary collab-
oration’ of two premisses set to achieve a conclusion. It will be analyzed further

Finally, we check some classically structural rules that do remain valid as

Modified Cut Derivation
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in chapter 5 in connection with philosophical models of scientific explanation.
We rephrase our notion as:

Weak Explanatory Abduction:
Θ | α ⇒ ϕ iff
(i) Θ, α |= ϕ

(ii) Θ '|= ϕ

The first thing to notice is that we must leave the binary format of premisses
and conclusion. This notion is non-symmetric, as Θ and α have different roles.
Given such a ternary format, we need a more finely grained view of structural
rules. For instance, there are now two kinds of monotonicity, one when a
formula is added to the explanations and the other one when it is added to the
theory:

Monotonicity for Abductive Explanations:

Θ | α ⇒ ϕ

Θ | α, A ⇒ ϕ

Monotonicity for Theories:

Θ | α ⇒ ϕ

Θ, A | α ⇒ ϕ

The former is valid, but the latter is not. (A counterexample is: p | q, r ⇒ q
but p, q | q, r %⇒ q). Monotonicity for explanations states that an explanation
for a fact does not get invalidated when we strengthen it, as long as the theory
is not modified.

Here are some valid principles for weak explanatory abduction.

Weak Explanatory Reflexivity

Θ | α ⇒ ϕ

Θ | ϕ ⇒ ϕ

Weak Explanatory Cut

Θ | α,β ⇒ ϕ Θ | α ⇒ β

Θ | α ⇒ ϕ

In addition, the classical forms of contraction and permutation are valid
on each side of the bar. Of course, one should not permute elements of the
theory with those in the explanation slot, or vice versa. We conjecture that
the given principles completely characterize the weak explanatory abduction
notion, when used together with the above valid form of monotonicity.
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Structural Rules with Connectives
Pure structural rules involve no logical connectives. Nevertheless, there are

natural connectives that may be used in the setting of abductive consequence.
For instance, all Boolean operations can be used in their standard meaning.
These, too, will give rise to valid principles of inference. In particular, the
following well-known classical laws hold for all notions of abductive inference
studied so far:

Disjunction of Θ-antecedents:

Θ1 | A ⇒ ϕ Θ2 | A ⇒ ϕ

Θ1 ∨ Θ2 | A ⇒ ϕ

Conjunction of Consequents

Θ | A ⇒ ϕ1 Θ | A ⇒ ϕ2

Θ | A ⇒ ϕ1 ∧ ϕ2

These rules will play a role in our proposed calculus for abduction, as we
will show later on.

Another way of expressing monotonicity with the aid of negation and clas-
sical derivability is as follows:

Monotonicity:
Θ | α ⇒ ϕ Θ | α %, ¬β

Θ | α,β ⇒ ϕ

We conclude a few brief points on the other versions of abduction on our list.
We have not undertaken to characterize these in any technical sense.

Minimal and Preferential Abductive Explanatory Inference
Consider our versions of ‘minimal’ abduction. One said that Θ,α |= ϕ and

α is the weakest such explanation. By contrast, preferential abduction said that
Θ,α |= ϕ and α is the best explanation according to some given preferential
ordering. For the former, with the exception of the above disjunction rule for
antecedents, no other rule that we have seen is valid. But it does satisfy the
following form of transitivity:

Transitivity for Minimal Abduction:

Θ | α ⇒ ϕ Θ | β ⇒ α

Θ | β ⇒ ϕ



Abduction as Logical Inference 81

For preferential abduction, on the other hand, no structural rule formulated so
far is valid. The reason is that the relevant preference order amongst formulas,
in itself needs to be captured in the formulation of our inference rules. A valid
formulation of monotonicity would then be something along the following lines:

Monotonicity for Preferential Abduction:

Θ | α ⇒ ϕ α,β < α

Θ | α,β ⇒ ϕ

In our opinion, this is no longer a structural rule, since it adds a mathematical
relation (< for a preferential order) that cannot in general be expressed in terms
of the consequence itself. This is a point of debate, however, and its solution
depends on what each logic artisan is willing to represent in a logic. In any
case, this format is beyond what we will study in this book.

Structural Rules for Nonstandard Inference
All abductive versions so far had classical consequence underneath. In this

section, we briefly explore structural behaviour when the underlying notion of
inference is non standard, as in preferential entailment. Moreover, we throw in
some words about structural rules for abduction in logic programming, and for
induction.

Preferential Reasoning
Interpreting the inferential parameter as preferential entailment means that
Θ,α ⇒ ϕ if (only) the most preferred models of Θ ∪ α are included in the
models of ϕ. This leads to a completely different set of structural rules. Here
are some valid examples, transcribed into our ternary format from [KLM90]:

Reflexivity: Θ,α ⇒ α

Cautious Monotonicity:

Θ | α ⇒ β Θ | α ⇒ γ

Θ | α,β ⇒ γ

Cut:
Θ | α,β ⇒ γ α ⇒ β

Θ | α ⇒ γ

Disjunction:
Θ | α ⇒ ϕ Θ | β ⇒ ϕ

Θ | α ∨ β ⇒ ϕ
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It is interesting to see in greater detail what happens to these rules when
we add our further conditions of ‘consistency’ and ‘explanation’. In all, what
happens is merely that we get structural modifications similar to those found
earlier on for classical consequence. Thus, a choice for a preferential proof
engine, rather than classical consequence, seems orthogonal to the behavior of
abduction.

Structural rules for Prolog Computation
An analysis via structural rules may be also performed for notions of ⇒ with
a more procedural flavor. In particular, the earlier-mentioned case of Prolog
computation obeys clear structural rules (cf. [vBe92, Kal95, Min90]). Their
format is somewhat different from classical ones, as one needs to represent
more of the Prolog program structure for premisses, including information on
rule heads. (Also, Kalsbeek [Kal95] gives a complete calculus of structural
rules for logic programming including such control devices as the cut operator
!). The characteristic expressions of a Gentzen style sequent calculus for these
systems (in the reference above) are sequents of the form [P ] ⇒ ϕ, where P
is a (propositional, Horn clause) program and ϕ is an atom. A failure of a
goal is expressed as [P ] ⇒ ¬ϕ (meaning that ϕ finitely fails). In this case,
valid monotonicity rules must take account of the place in which premisses are
added, as Prolog is sensitive to the order of its program clauses. Thus, of the
following rules, the first one is valid, but the second one is not:

Right Monotonicity
[P ] ⇒ ϕ

[P ;β] ⇒ ϕ

Left Monotonicity
[P ] ⇒ ϕ

[β; P ] ⇒ ϕ

Counterexample: β = ϕ ← ϕ

The question of complete structural calculi for abductive logic programming
will not be addressed in this book, we will just mention that a natural rule for
an ‘abductive update’ is as follows:

Atomic Abductive Update

[P ] ⇒ ¬ϕ
[P ;ϕ] ⇒ ϕ

We will briefly return to structural rules for abduction as a process in the next
chapter.
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Structural Rules For Induction
Unlike abduction, enumerative induction is a type of inference that explains a
set of observations, and makes a prediction for further ones (cf. our discussion
in chapter 2). Our previous rule for conjunction of consequents already suggests
how to give an account for further observations, provided that we interpret the
commas below as conjunction amongst formulae (in the usual Gentzen calculus,
commas to the right are interpreted rather as disjunctions):

α ⇒ ϕ1 α ⇒ ϕ2

α ⇒ ϕ1, ϕ2

That is, an inductive explanation α for ϕ1 remains an explanation when a
formula ϕ2 is added, provided that α also accounts for it separately. Note that
this rule is a kind of monotonicity, but this time the increase is on the conclusion
set rather than on the premisse set. More generally, an inductive explanation α
for a set of formulae remains valid for more input data ψ when it explains it:

(Inductive) Monotonicity on Observations

Θ | α ⇒ ϕ1, . . . ,ϕn Θ | α ⇒ ψ

Θ | α ⇒ ϕ1, . . . ,ϕn,ψ

In order to put forward a set of rules characterizing inductive explanation,
a further analysis of its properties should be made, and this falls beyond the
scope of this thesis. What we anticipate however, is that a study of enumerative
induction from a structural point of view will bring yet another twist to the
standard structural analysis, that of giving an account of changes in conclusions.

Further Logical Issues
Our analysis so far has only scratched the surface of a broader field. In this

section we discuss a number of more technical logical aspects of abductive styles
of inference. This identifies further issues that seem relevant to understanding
the logical properties of abduction.

Completeness
The usual completeness theorems have the following form:

Θ |= ϕ iff Θ - ϕ

With our ternary format, we would expect some similar equivalence, with a
possibly different treatment of premisses on different sides of the comma:

Θ, α |= ϕ iff Θ, α - ϕ

Can we get such completeness results for any of the abductive versions we
have described so far? Here are two extremes.
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The representation arguments for the above characterizations of abduction
may be reworked into completeness theorems of a very simple kind. (This
works just as in [vBe96a], chapter 7). In particular, for consistent abduction,
our earlier argument essentially shows that Θ,α ⇒ ϕ follows from a set of
ternary sequents Φ iff it can be derived from Φ using only the derivation rules
(CR), (SC), (CC) above.

These representation arguments may be viewed as ‘poor man’s completeness
proofs’, for a language without logical operators. Richer languages arise by
adding operators, and completeness arguments need corresponding ‘upgrading’
of the representations used. (Cf. [Kur95] for an elaborate analysis of this
upward route for the case of categorial and relevance logics. [Gro95] considers
the same issue in detail for dynamic styles of inference.) At some level, no more
completeness theorems are to be expected. The complexity of the desired proof
theoretical notion , will usually be recursively enumerable (Σ0

1). But, our later
analysis will show that, with a predicate-logical language, the complexity of
semantic abduction |= will become higher than that. The reason is that it mixes
derivability with non-derivability (because of the consistency condition).

So, our best chance for achieving significant completeness is with an in-
termediate language, like that of propositional logic. In that case, abduction
is still decidable, and we may hope to find simple proof rules for it as well.
(Cf. [Tam94] for the technically similar enterprise of completely axiomatizing
simultaneous ‘proofs’ and ‘fallacies’ in propositional logic.) Can we convert
our representation arguments into full-fledged completeness proofs when we
add propositional operators ¬,∧,∨? We have already seen that we do get
natural valid principles like disjunction of antecedents and conjunction of con-
sequents. However, there is no general method that connects a representational
result into more familiar propositional completeness arguments. A case of suc-
cessful (though non-trivial) transfer is in [Kan93], but essential difficulties are
identified in [Gro95].

Instead of solving the issue of completeness here, we merely propose the
following axioms and rules for a sequent calculus for consistent abduction
(which we label as |=c) in what follows:

Axiom: p |=c p

Rules for Conjunction:

∧1
Θ |=c ϕ1, Θ |=c ϕ2

Θ |=c ϕ1 ∧ ϕ2

The following are valid provided that α,ψ are formulas with only positive
propositional letters:
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∧2
α |=c α ψ |=c ψ

α,ψ |=c α

∧3
α,ψ |=c ϕ

α ∧ ψ |=c ϕ

Rules For Disjunction:

∨1
Θ1 |=c ϕ Θ2 |=c ϕ

Θ1 ∨ Θ2 |=c ϕ

∨2
Θ |=c ϕ

Θ |=c ϕ ∨ ψ

∨3
Θ |=c ϕ

Θ |=c ψ ∨ ϕ

Rules for Negation:

¬1
Θ, A |=c ϕ

Θ |=c ϕ ∨ ¬A

¬2
Θ |=c ϕ ∨ A Θ ∧ ¬A |=c ψ

Θ ∧ ¬A |=c ϕ

It is easy to see that these rules are sound on the interpretation of |= as
consistent abduction. This calculus is already unlike most usual logical systems,
though. First of all there is no substitution rule, as p |= p is an axiom, whereas
in general ψ %|= ψ unless ψ has only positive propositional letters, in which
case it is proved to be consistent. By itself, this is not dramatic (for instance,
several modal logics exist without a valid substitution rule), but it is certainly
uncommon. Moreover, note that the rules which “move things to the left" (¬2)
are different from their classical counterparts, and others (∧3) are familiar but
here a condition to ensure consistency is added. Even so, one can certainly do
practical work with a calculus like this.

For instance, all valid principles of classical propositional logic that do not
involve negations are derivable here. Semantically, this makes sense, as positive
formulas are always consistent without special precautions. On the other hand,
it is easy to check that the calculus provides no proof for a typically invalid
sequent like p ∧ ¬p |= p ∧ ¬p8.

8The reason is that their cut-free classical proofs (satisfying the subformula property) involve only conjunc-
tion and disjunction - for which we have the standard rules.
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Digression:
A general semantic view of abductive explanatory consequence
Speaking generally, we can view a ternary inference relation Θ | α ⇒ ϕ as a
ternary relation C (T, A, F) between sets of models for, respectively, Θ, α, and
ϕ. What structural rules do is constrain these relations to just a subclass of all
possibilities. (This type of analysis has analogies with the theory of generalized
quantifiers in natural language semantics. It may be found in [vBe84a] on the
model theory of verisimilitude, or in [vBe96b] on general consequence relations
in the philosophy of science.) When enough rules are imposed we may represent
a consequence relation by means of simpler notions, involving only part of the
a priori relevant 23 = 8 “regions" of models induced by our three argument
sets.

In this light, the earlier representation arguments might even be enhanced by
including logical operators. We merely provide an indication. It can be seen
easily that, in the presence of disjunction, our explanatory abduction satisfies
full Boolean ‘Distributivity’ for its abducible argument αi:

Θ |
∨

i αi ⇒ ϕ iff for some i, Θ | αi ⇒ ϕ.

Principles like this can be used to reduce the complexity of a consequence
relation. For instance, the predicate argument A may now be reduced to a point
wise one, as any set A is the union of all singletons {a} with a ∈ A.

Complexity
Our next question addresses the complexity of different versions of abduction.
Non-monotonic logics may be better than classical ones for modelling common
sense reasoning and scientific inquiry. But their gain in expressive power usually
comes at the price of higher complexity, and abduction is no exception. Our
interest is then to briefly compare the complexity of abduction to that of classical
logic. We have no definite results here, but we do have some conjectures. In
particular, we look at consistent abduction, beginning with predicate logic.

Predicate-logical validity is undecidable by Church’s Theorem. Its exact
complexity is Σ0

1 (the validities are recursively enumerable, but not recursive).
(To understand this outcome, think of the equivalent assertion of derivability:
“there exists a P: P is a proof forϕ".) More generally, Σ (or Π) notation refers to
the usual prenex forms for definability of notions in the Arithmetical Hierarchy.
Complexity is measured here by looking at the quantifier prenex, followed by a
decidable matrix predicate. A subscript n indicates n quantifier changes in the
prenex. (If a notion is both Σn and Πn, it is called ∆n.) The complementary
notion of satisfiability is also undecidable, being definable in the form Π0

1. Now,
abductive consequence moves further up in this hierarchy.

In order to show that consistent abduction is not ∆0
2-complete we have the

following. The statement that “Θ,α is consistent” isΠ0
1, while the statement that
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“Θ,α |= ϕ” is Σ0
1 (cf. the above observations). Therefore, their conjunction

may be written, using well-known prenex operations, in either of the following
forms:

∃∀DEC or ∀∃DEC.

Hence consistent abduction is in ∆0
2. This analysis gives an upper bound

only. But we cannot do better than this. So it is also a lower bound. For the
sake of reductio, suppose that consistent abduction were Σ0

1. Then we could
reduce satisfiability of any formula B effectively to the abductive consequence
B, B ⇒ B, and hence we would have that satisfiability is also Σ0

1. But then,
Post’s Theorem says that a notion which is both Σ0

1 and Π0
1 must be decidable.

This is a contradiction, and hence Θ,α ⇒ ϕ is not Σ0
1. Likewise, consistent

abduction cannot be Π0
1, because of another reduction: this time from the

validity of any formula B to True, True ⇒ B.
Consistent abduction is not ∆0

2-complete. Although it is in ∆0
2 and is not Π0

1,
the latter is not sufficient to prove its hardness and thereby completeness, for that
we would have to show that every ∆0

2 predicate may be reduced to consistent
abduction, and we can only prove that it can be written as a conjunction of Σ0

1
and Π0

1, showing that it belongs to a relatively simple part of ∆0
2.

By similar arguments we can show that the earlier weak explanatory ab-
duction is in ∆0

2 – and the same holds for other variants that we considered.
Therefore, our strategy in this chapter of adding amendments to classical con-
sequence is costly, as it increases its complexity. On the other hand, we seem
to pay the price just once. It makes no difference with respect to complex-
ity whether we add one or all of the abductive requirements at once. We do
not have similar results about the cases with minimality and preference, as their
complexity will depend on the complexity of our (unspecified) preference order.

Complexity may be lower in a number of practically important cases. First,
consider poorer languages. In particular, for propositional logic, all our notions
of abduction remain obviously decidable. Nevertheless, their fine-structure will
be different. Propositional satisfiability is NP-complete, while validity is Co-
NP-complete.

Another direction would restrict attention to useful fragments of predicate
logic. For example, universal clauses without function symbols have a decidable
consequence problem. Therefore we have the following:

Proposition 4 All our notions of abductive explanatory inference are decidable
over universal clauses.

Finally, complexity as measured in the above sense may miss out on some
good features of abductive reasoning, such as possible natural bounds on search
space for abducibles. A very detailed study on the complexity of logic-based
abduction which takes into account different kinds of theories (propositional,
clausal, Horn) as well as several minimality measures are found in [EG95].
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The Role of Language
Our notions of abduction all work for arbitrary formulas, and hence they have no
bias toward any special formal language. But in practice, we can often do with
simpler forms. E.g., observations ϕ will often be atoms, and the same holds for
explanations α. Here are a few observations showing what may happen.

Syntactic restrictions may make for ‘special effects’. For instance, our dis-
cussion of minimal abduction contained ‘Carnap’s trick’, which shows that the
choice of α = Θ → ϕ will always do for a minimal solution. But notice that
this trivialization no longer works when only atomic explanations are allowed.

Here is another example. Let Θ consist of propositional Horn clauses only.
In that case, we can determine the minimal abduction for an atomic conclusion
directly. A simple example will demonstrate the general method:

Let Θ = {q ∧ r → s, p ∧ s → q, p ∧ t → q} and ϕ = {q}

q ∧ r → s, p ∧ s → q, p ∧ t → q, α? ⇒ q

(i) Θ, α |= ((p ∧ s → q) ∧ (p ∧ t → q)) → q

(ii) Θ, α |= (p ∧ s) ∨ (p ∧ t) ∨ q

That is, first make the conjunction of all formulas in Θ having q for head
and construct the implication to q (i), obtaining a formula which is already
an abductive solution (a slightly simpler form than Θ → ϕ).Then construct
an equivalent simpler formula (ii) of which each disjunct is also an abductive
solution. (Note that one of them is the trivial one). Thus, it is relatively easier
to perform this process over a simple theory rather than having to engage in a
complicated reasoning process to produce abductive explanations.

Finally, we mention another partly linguistic, partly ontological issue that
comes up naturally in abduction. As philosophers of science have observed,
there seems to be a natural distinction between ‘individual facts’ and ‘general
laws’ in explanation. Roughly speaking, the latter belong to the theory Θ, while
the former occur as explananda and explanantia. But intuitively, the logical ba-
sis for this distinction does not seem to lie in syntax, but rather in the nature of
things. How could we make such a distinction? ([Fla95] mentions this issue
as one of the major open questions in understanding abduction, and even its
implementations.) Here is what we think has to be the way to go. Explanations
are sought in some specific situation, where we can check specific facts. More-
over, we adduce general laws, not tied to this situation, which involve general
reasoning about the kind of situation that we are in. The latter picture is not
what is given to us by classical logic. We would rather have to think of a mixed
situation (as in, say, the computer program Tarski’s World, cf. [BE93]), where
we have two sources of information. One is direct querying of the current
situation, the other general deduction (provided that it is sound with respect
to this situation.) The proper format for abduction then becomes a mixture of
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‘theorem proving’ and ‘model checking’ (cf. [SUM96]). Unfortunately, this
would go far beyond the bounds of this book.

5. Discussion and Conclusions
Is Abductive Explanatory Inference a Logical System?

The notion of abduction as a logical inference goes back to Peirce’s dis-
tinction into kinds of logical reasoning, in which abduction plays the role of
hypothetical inference. Therefore, its certainty is low and its non-monotonicity
high. Though these aspects make it difficult to be handled, it is certainly a
logical system of its own kind, which may be classified of the inductive type
within Haack’s approach9. It shares the language with classical logic and ab-
ductive conclusions are not valid by only means of the classical consequence
(but abduction may have the underlying consequence relation of the deductive
type). It can even be somewhat identified with the second characterization of
induction, namely in which it is improbable ‘supposing’/given that the ‘hy-
potheses’/premisses are true that the conclusion is false, and therefore we can
assert that the conclusion is true in a tentative way. But abduction may also
be classified as a deviant system, such as in the explanatory abductive version,
in which the premisses really contribute for asserting the conclusion, they are
relevant in a way to the conclusion. In other words, the language is the same,
but the consequence relation is more demanding to the conclusion.

The various types of abductive explanatory styles in a larger universe of other
deductive and inductive systems of logic naturally commits us to a pluralistic
and a global view of logic, such as Haack’s own position, in which there is
a variety of logical systems which rather than competing and being rival to
each other, they are complementary in that each of them has a specific notion
of validity corresponding to an extra-systematic one and a rigorous way for
validating arguments, for it makes sense to speak of a logical system as correct
or incorrect, having several of them. And finally, the global view states for
abduction that it must aspire to global application, irrespective of subject-matter,
and thus found in scientific reasoning and in common sense reasoning alike.

Abductive Explanatory Inference as a Structured Logical
Inference

Studying abduction as a kind of logical inference has provided much more
detail to the broad schema in the previous chapters. Different conditions for
a formula to count as a genuine explanation, gave rise to different abductive
styles of inference. Moreover, the latter can be used over different underlying

9Although Haack does not include explicitly abduction in her classification, she admits her existence [Haa78,
page 12n].
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notions of consequence (classical, preferential, statistical). The resulting ab-
ductive explanatory logics have links with existing proposals in the philosophy
of science, and even further back in time, with Bolzano’s notion of deducibility.
They tend to be non-monotonic in nature. Further logical analysis of some
key examples revealed many further structural rules. In particular, consistent
abduction was completely characterized. Finally, we have discussed possible
complete systems for special kinds of abduction, as well as the complexity of
abduction in general.

The analysis of abductive explanatory inference at such an abstract meta-
logical level, has allowed for an outlook from a purely structural perspective.
We have taken its bare bones and study its consequence type with respect to
itself (reflexivity), to the ability to handle new information (monotonicity), to
the loss of repeated information (contraction), to the order in which premisses
appear (permutation) and to the ability of handling chains of arguments (cut).
In short, we tested abductive inference with respect to its ability to react to a
changing world. As it turned out, none of the above properties were really an
issue for plain abduction, for it is ruled by classical consequence, and therefore
observes the same behaviour as that of classical reasoning. It easily allows
reflexivity and new information does not invalidate in any way previous one.
Moreover, in plain abduction premisse order does not affect the outcome of
reasoning. Finally, cut is an easy rule to follow. In contrast, consistent abduc-
tion is not even classically reflexive, Still, every formula that in turn explains
consistently (or it is explained consistently by something else) is reflexive, and
thus ensuring that consistency is preserved. Consistent abduction is also very
sensitive to the growth of information, as inconsistent information cannot come
in at all. But if the new data explains something else together with the theory,
then it is possible to add it as new information. Finally, consistent abduction
also handles a somewhat sophisticated kind of cut, giving thus a way to chain
the arguments. The only rules, which these two types of abductive reasoning
share, are contraction of repeated formulae and permutation.

Here is what we consider the main outcomes of our analysis. We can see ab-
ductive explanatory inference as a more structured form of consequence, whose
behavior is different from classical logic, but which still has clear inferential
structure. The modifications of classical structural rules, which arise in this
process, may even be of interest by themselves – and we see this whole area as
a new challenge to logicians. Note that we did not locate the ‘logical’ character
of abduction in any specific set of (modified) structural rules. If pressed, we
would say that some modified versions of Reflexivity, Monotonicity and Cut
seem essential – but we have not been able to find a single formulation that
would stand once and for all. (Cf. [Gab94a] and [Gab94b] for a fuller discus-
sion of the latter point.) Another noteworthy point was our ternary format of
inference, which gives different roles to the theory and explanation on the one
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hand, and to the conclusion on the other. This leads to finer-grained views of
inference rules, whose interest has been demonstrated.

Abductive Explanatory Inference and Geometries
Nevertheless, the structural characterization we have proposed still leaves a

question unanswered, namely, in what sense an structural characterization leads
to a logic, to a full syntactic or semantic characterization. Even more, despite
the technical results presented, some readers may still doubt whether abductive
reasoning can be considered really logical, perhaps it is more appropriate to
render it as a special type of reasoning. After all, by accepting abductive
reasoning as logical we are accepting a system that only produces tentative
conclusions and not certainties as it is the case for classical reasoning. Let me
precise these questions as follows:

1 In what sense the structural characterization of consistent abduction does
lead to its logic?

2 Are non-classical inferences, such as abduction, really logical?

Regarding the first of these questions, its answer concerns a mathematical
technical problem. That is, it implies a reformulation of the representation
theorem into a completeness theorem, for a logical language without operators
(recall that structural rules are pure, they have no connectives). Furthermore,
a syntactic characterization of abduction requires the extension of the logical
language, to include axioms and operators in order to formulate rules with
connectives and so construct an adequate logical abductive calculi. This way
to proceed, which is to obtain a syntax out of an structural characterization, has
been explored with success for other logics, such as dynamic, relevance and
categorial. Regarding a semantics for abduction, there is also some exploratory
work in this direction, using an extended version of semantic tableaux (cf.
next chapter). However, I conjecture that an abductive version such as the one
allowing all conditions at once does produce a logic that is incomplete.

Regarding the second question, its answer concerns a terminological ques-
tion of what we want to denote by the term logic. Although structural analysis
of consequence has proved very fruitful and has even been proposed as a dis-
tinguished enterprise of Descriptive Logic in [Fla95], many logicians remain
doubtful, and withhold the status of bona fide ‘logical inference’ to the products
of non-standard styles.

This situation is somewhat reminiscent of the emergence of non-euclidean
geometries in the nineteenth century. Euclidean geometry was thought of as the
one and only geometry until the fifth postulate (the parallel axiom) was rejected,
giving rise to new geometries. Most prominently, the one by Lobachevsky ,
which admits of more than one parallel, and the one by Riemann admitting
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none. The legitimacy of these geometries was initially doubted but their impact
gradually emerged10. In our context, it is not geometry but styles of reasoning
that occupy the space, and there is not one postulate under critical scrutiny,
but several. Rejecting monotonicity gives rise to the family of non-monotonic
logics, and rejecting permutation leads to styles of dynamic inference. Linear
logics on the other hand, are created by rejecting contraction. All these alter-
native logics might get their empirical vindication, too – as reflecting different
modes of human reasoning.

Whether non-classical modes of reasoning are really logical is like asking if
non-euclidean geometries are really geometries. The issue is largely termino-
logical, and we might decide – as Quine did on another occasion (cf.[Qui61])
– to just give conservatives the word ‘logic’ for the more narrowly described
variety, using the word ‘reasoning’ or some other suitable substitute for the
wider brands. In any case, an analysis in terms of structural rules does help us
to bring to light interesting features of abduction, logical or not.

Conclusions
Summarizing, we have shown that abduction can be studied with profit as

a purely logical notion of inference. Of course, we have not exhausted this
viewpoint here – but we must leave its full exploration to other logicians. Also,
we do not claim that this analysis exhausts all essential features of abduction, as
discussed in chapter 2. To the contrary, there are clear limitations to what our
present perspective can achieve. While we were successful in characterizing
what an explanation is, and even show how it should behave inferentially under
addition or deletion of information, the generation of abductive explanations
was not discussed at all. The latter procedural enterprise is the topic of our
next chapter. Another clear limitation is our restriction to the case of ‘novelty’,
where there is no conflict between the theory and the observation. For the case
of ‘anomaly’, we need to go into theory revision, as will happen in chapter 8.
That chapter will also resume some threads from the present one, including a full
version of abduction, in which all our cumulative conditions are incorporated.
The latter will be needed for our discussion of Hempel’s deductive-nomological
model of explanation.

Related Work
Abduction has been recognized as a non-monotonic logic but with few ex-

ceptions, no study has been made to characterize it as a logical inference. In
[Kon90] a general theory of abduction is defined as classical inference with

10The analogy with logic can be carried even further, as these new geometries were sometimes labeled
‘meta-geometries’.
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the additional conditions of consistency and minimality, and it is proved to be
implied by Reiter’s causal theories [Rei87], in which a diagnosis is a minimal
set of abnormalities that is consistent with the observed behaviour of a system.
Abduction is also proposed as a procedural mechanism in which the input Q
is an abductive stimulus (goal), and we are interested in ∆′ such that ∆ + ∆′

explains Q (with some suitable underlying inference) [Gab94b, p. 199].
Another approach, closer to our own, though developed independently, is

found in Peter Flach’s PhD dissertation “Conjectures: an inquiry concerning
the logic of induction” [Fla95], which we will now briefly describe and compare
to our work (some of what follows is based on a more recent version of his
proposal [Fla96a].)

Flach’s logic of induction
Flach’s thesis is concerned with a logical study of conjectural reasoning, com-
plemented with an application to relational databases. An inductive conse-
quence relation ≺ (≺⊆ LxL, L a propositional language) is a set of formulae;
α ≺ β interpreted as “β is a possible inductive hypothesis that explains α”, or
as: “β is a possible inductive hypothesis confirmed by α”. The main reason
for this distinction is to dissolve the paradoxical situation posed by Hempel’s
adequacy conditions for confirmatory reasoning [Hem43, Hem45], namely that
in which a piece of evidence E could confirm any hypothesis whatsoever11.
Therefore, two systems are proposed: one for the logic of confirmation and
the other for the logic of explanation, each one provided with an appropriate
representation theorem for its characterization. These two systems share a set
of inductive principles and differ mainly in that explanations may be strength-
ened without ceasing to be explanations (H5), and confirmed hypotheses may
be weakened without being disconfirmed (H2). To give an idea of the kind of
principles these systems share, we show two of them, the well-known principles
of verification and falsification in Philosophy of Science:

I1 If α ≺ β and |= α ∧ β → γ, then α ∧ γ ≺ β.

I2 If α ≺ β and |= α ∧ β → γ, then α ∧ ¬γ %≺ β.

They state that when a hypothesis β is tentatively concluded on the basis of
evidence α, and a prediction γ drawn from α and β is observed, then β counts
as a hypothesis for both α and γ (I1), and not for α and ¬γ (I2) (a consequence
of the latter is that reflexivity is only valid for consistent formulae).

11This situation arises from accepting reflexivity (H1: any observation report is confirmed by itself) and
stating on the one hand that if an observation report confirms a hypothesis, then it also confirms every
consequence of it (H2), and on the other that if an observation report confirms a hypothesis, then it also
confirms every formula logically entailing it (H5).
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Comparison to our work
Despite differences in notation and terminology, Flach’s approach is connected
to ours in several ways. Its philosophical motivation is based on Peirce and
Hempel, its methodology is also based on structural rules, and we agree that the
relationship between explananda and explanandum is a logical parameter (rather
than fixed to deduction) and on the need for complementing the logical approach
with a computational perspective. Once we get into the details however, our
proposals present some fundamental differences, from a philosophical as well
as a logical point of view.

Flach departs from Hempel’s work on confirmation [Hem43, Hem45], while
ours is based on later proposals on explanation [HO48, Hem65]. This leads to
a discrepancy in our basic principles. One example is (consistent) reflexivity;
a general inductive principle for Flach but rejected by us for explanatory ab-
duction (since one of Hempel’s explanatory adequacy conditions imply that it
is invalid, cf. chapter 5). Note that this property reflects a more fundamental
difference between confirmation and explanation than H2 and H5: evidence
confirms itself, but it does not explain itself 12. There are also differences in the
technical setup of our systems. Although Flach’s notion of inductive reasoning
may be viewed as a strengthened form of logical entailment, the representa-
tion of the additional conditions is explicit in the rules rather than within the
consequence relation. Nevertheless, there are interesting analogies between
the two approaches, which we must leave to future work. We conclude with
a general remark. A salient point in both our approaches is the importance of
consistency, also crucial in Hempel’s adequacy conditions both for confirmation
and explanation, and in AI approaches to abduction. Thus, Bolzano’s notion
of deducibility comes back as capturing an intrinsic property of conjectural
reasoning in general.

12Flach correctly points out that Hempel’s own solution to the paradox was to drop condition (H5) from his
logic of confirmation. Our observation is that the fact that Hempel later developed an independent account
for the logic of explanation [HO48, Hem65], suggests he clearly separated confirmation from explanation.
In fact his logic for the latter differs in more principles than the ones mentioned above.


